River Water Level Prediction Using Physically Based and Data Driven Models
نویسنده
چکیده
The ability to simulate the propagation of flood waves is of crucial importance for planning and operational management of river floods. Hydrodynamic and hydrologic numerical models provide such capabilities and represent conventional approaches to river flood modelling. In the recent years, data driven models such as artificial neural networks (ANNs), and neurofuzzy systems have also emerged as viable tools for this purpose.
منابع مشابه
River Flow Simulation Using SWAT Physically Based Model in Barandouzchay of Urmia Lake River Basin
Nowadays, there are too many models in the world for simulation of hydrological processes, such as the SWAT physically based model. The SWAT model is a continuous and physically based hydrologic model that is the smallest unit in this model is Hydrologic Response Unit, and all hydrological processes are simulated in each of these units. This model can simulate runoff, sedimentation, erosion and...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملHybrid Models Performance Assessment to Predict Flow of Gamasyab River
Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...
متن کاملPrediction of potential habitat distribution of Artemisia sieberi Besser using data-driven methods in Poshtkouh rangelands of Yazd province
The present study aimed to model potential habitat distribution of A. sieberi, and its ecological requirements using generalized additive model (GAM) and classification and regression tree (CART) in in the Poshtkouh rangelands of Yazd province. For this purpose, pure habitats of the species was delineated and the species presence data was recorded by the systematic-randomize sampling method. Us...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کامل